Добавить биографию на сайт

Биографии известных людей.
Факты, фото, видео, интересные истории.

Поделиться

Сарджесон, Алан: биография

Ещё одна работа была посвящена гидролизу и образованию пептидов с участием эфиров аминокислот и амидов под действием кобальта. Было установлено, что бис-этилендиаминовый (NH2CH2CH2NH2) комплекс, содержащий метиловый эфира глицина, быстро реагирует в сухом полярном апротонном растворителе с эфирами аминокислот и пептидов с образованием новых пептидных связей. Таким образом, они продемонстрировали, что ион кобальта может выступать в качестве защитной группы для аминогруппы, а также может выступать в качестве активирующего агента (кислота Льюиса) для карбонильного центра хелатированного эфира аминокислоты. В аналогичных работах, они показали, что комплекс [Co(NH3)5NH2CH2(O)OC2H5]3+ в щелочном водном растворе быстро дает амидный комплекс [Co(NH3)4NH2CH2C(O)NH]2+ с бидентантным глицином, с промежуточным образованием амида [Co(NH3)4(NH2)NH2CH2C(O)С2Н5]2+. Хотя предполагаемый амидный интермедиат имеет очень короткое время жизни, он способен вступать в очень быструю реакцию с эфирной группой, предположительно, из-за анхимерного эффекта — увеличения скорости из-за вынужденного сближения реагентов. Аналогичное превращение наблюдалось в реакции с [Co(en)2Br(NH2CH2C(O)NH2)]2+. Замещение лиганда Br- гидроксидом ионом с последующим быстрым внутримолекулярным образованием координированной аминокислоты. Было обнаружено, что, как правило, эти внутримолекулярные реакции, происходят более чем в 400 раз быстрее, в сравнении с соответствующими межмолекулярными реакциями.

Исследовательская школа химии

В 1967 году ANU завершило создание научно-исследовательской школы химии. Алан и его группа должны были переехать туда. Он покинул медицинскую школу с некоторым сожалением, поскольку ранее сотрудничал с биологами, но химическая школа предоставляла уникальные преимущества, в частности — более гибкая административная структура. В новой школе сотрудничество Сарждесона и Бакингема продолжалась ещё несколько лет, но становилось все более очевидным, что так не может дальше продолжаться, поскольку продвижение требовало четкого разграничения индивидуальных вкладов. Вскоре Алан нанял двух сотрудников, Джека Харрофильда и Грега Джексона. Оба позже стали профессорами в австралийских университетах.

Было общеизвестно, что такие ионы, как Zn2+ и Mg2+ способны ускорять гидролиз полифосфатов и эфиров фосфорной кислоты. Из-за лабильности этих металл-фосфатных связей (комплексы кинетически неустойчивы) было трудно проследить этапы механизма гидролиза. Ионы Co3+ образуют термодинамически стабильным (не лабильные) кобальт-фосфатные связи, что делает их подходящими для изучения механизмов расщепления связей фосфор-кислород. Также образом, было обнаружено, что в щелочном водном растворе [Co(NH3)5OP(O)2OC6H4NO2]+, содержащий монодентантный п-нитрофенолфосфатный лиганд, образует циклический фосфоамидный лиганд и это сопровождается выделением п-нитрофенолята (NPO). Было установленно, что скорости для внутримолекулярного замещения NPO приблизительно в 106 раз выше, чем для соответствующей межмолекулярной реакции.

Аналогичная внутримолекулярная циклизации, но с участием гидроксильного лиганда, связанного с кобальтом, была изучена на cis-[Co(En)2(OH)(OP(O)2OC6H4NO2]+. Несмотря на то, координированный гидроксид-ион, по крайней мере в 107 раз менее основный, чем свободный гидроксид-ион, внутримолекулярный процесс, по крайней мере в 105 раз быстрее, чем соответствующее межмолекулярное замещение группы NPO свободными гидроокисид-ионами.

Алан продолжал работы по классическим реакциям замещения в комплексах Co3+. Наиболее заметным из них было полное исследование, совместно с Джексоном, стереохимического поведения cis-[Co(En)2XY]n+ ионов, которые подвергаются спонтанным реакциям гидратации.

Пожалуй, наиболее заметным достижением Алана был синтез с высоким выходом молекулярных клеток, в которые был помещен ион металла. Синтетическая концепция появилась из предыдущих наблюдений группы, связанных с тем, что в щелочном водном растворе формальдегид способен взаимодействовать с координированными кобальтом аминами, давая в одном из случаев макроциклический лиганд, в котором соседние атомы азота двух этилендиаминов связаны бис-метиленоксо группами. Интересная реакция происходит при медленном введении формальдегида и аммиака в щелочной водный раствор [Co(En)3]3+. Наблюдался высокий выход [Сo(sep)]3+. Полициклическая клетка получила название сепулькрат (sepulchrate) (SEP). Клеточный комплекс [Co(sep)]3+ неограниченно стабилен в нейтральных водных растворах и в 3 М HCl. Восстановленный аналог [Co(sep)]2+ стабилен в нейтральных и в слабо щелочных растворах; в таких растворах он легко окисляется кислородом до исходного комплекса, [Co(sep)]3+. Ион [Co(sep)]2+ разлагается в кислых растворах по механизму, который включает протонирование апикальных (шапочных) аминов. Стабильность комплекса [Co(sep)]3+ с более высокой степенью окисления кобальта связана с гораздо меньшей основностью апикальных аминов. Гомохиральные (оптически активные) формы клетки [Co(sep)]3+ были выделены и было обнаружено, что, при восстановлении [Co(sep)]2+, а затем повторном окислении, хиральность полностью сохранялась. Этот результат показывает, что ион Со2+ не выходит из клетки; этот результат был подтвержден с помощью метода обмена метки (60Сo2+). Присущая нестабильность по отношению кислотам двухвалентных комплексов sep обошли путём приготовления [Co(sar)]3+ (sar является сокращением от саркофагин (sarcophagine)), аналогичный клеточный комплекс, в котором атомы азоты шапки заменены метиленовыми группами. Этот комплекс был получен с высоким выходом в реакции [Co(En)3]3+ с формальдегидом и нитрометаном в холодном щелочном водном растворе. В первоначально образующемся клеточном комплексе апикальные атомы углерода шапок связаны с нитрогруппами. Замещение этих группы атомами водорода было достигнуто с помощью стандартных методов органической химии. Как и ожидалось, [Co(sar)]3+ комплекс был стабилен в сильно кислых растворах; другие его химический свойства были такими же, как и у аналога [Co(sep)]3+. Были разработаны несколько методов удаления, наиболее полезным является реакция цианид-ионов с комплексом Co2+ в кипящей воде. Почти все из ионов металлов первого переходного ряда, некоторые в двух степенях окисления, были помещены в клетку sar. Все эти комплексы продемонстрировали высокую термодинамическую и кинетическую стабильность, а некоторые — необычные физические свойства.

КОММЕНТАРИИ
Написать комментарий

НАШИ ЛЮДИ