Добавить биографию на сайт

Биографии известных людей.
Факты, фото, видео, интересные истории.

Поделиться

Очоа, Северо: биография

Таким образом, чтобы идентифицировать триплеты, кодирующие каждую из 20 аминокислот, не потребовалось много времени, как и на то, чтобы показать, что код был обращённым во многих случаях, некоторые триплеты кодируют одинаковые аминокислоты. Последовательность триплетов, определяющаяся аминокислоты, была определена Филлипом Ледером и Маршаллом Ниренбергом после открытия того факта, что последовательности триплетов специфических оснований способствовали связыванию особых аминоацил-тРНК с рибосомой. Об этом было объявлено на Международном Конгрессе по Биохимии в Нью-Йорке в 1964 году. Химическим выделением соответствующей мРНК код для аминокислот красиво подтвердил Гобин Хорана, используя синтез олигоксирибонуклеотидов и транскрипцию с использованием РНК-полимеразы. Концевые триплеты были найдены в ходе оригинальных генетических экспериментов Сидни Бреннера в Кэмбридже и Гарена в Йеле. Маркер из Кэмбриджа открыл, что AUG -кодон, инициирующий цепь. Используя полинуклеотиды, начиная с AUG или дргого кодона, приготовленные с помощью полинуклеотидфосфорилазы, лаборатория Северо Очоа определила, что направление чтения — от 5’ к 3’. Он также in vitro определил, что UAA — один из концевых кодонов.

Инициирующие гены синтеза белка

Сразу три группы — Маргарита Салас и Стэнли у Очоа, Айзенштадт и Браверманн и Ревель с Гросом обнаружили, что природная мРНК, как MS2 и QB бактериофагов переносится неочищенными рибосомами кишечной палочки, а рибосомами, промытыми с 0,5 или 1М сульфатом аммония, не переносится. Однако отмытые рибосомы легко переносят polyA или polyU, но не полимеры, начинающиеся с AUG, которые ведут себя как природные мРНК. Было открыто, что сульфат аммония вымывает содержащийся там белковый ген, названный «геном инициации», нужный для переноса природной мРНК или полинуклеотидов, начинающихся с AUG. Первые два гена, а позднее и третий, были выделены и теперь называются IF1, IF2 и IF3. В то же время Кларком и Маркером было показано, что полипептидные цепи бактерий начинаются со специфического метил-тРНКfMet, который эстерифицирует метионин, который, в свою очередь, вырабатывается и обнаруживается в полипептидной цепи в концевой аминной позиции. Метил-тРНКfMet кодируется AUG, и пролонгатор метил-тРНКfMet не может быть выработан специфической формилазой. По поводу понимания роли IF1 и IF3 и последовательности событий, ведущих к инициации образования комплекса в кишечной палочке, велись споры и дебаты, даже в группе Очоа. Теперь это ясно благодаря исследованиям многих учёных.

В начале 1970-го Очоа переключается на изучение инициации трансляции в эукариотах. Ричард Свит в 1968 году первым обнаружил гены инициации в эукариотах. Аналоги IF2 были затем выделены в нескольких лабораториях (Даниэль Левин, Тэо Стаэлин, Наба Гупта). eIF2, как теперь его называют, состоит из цепи из трёх полипептидов, и его функции — образовывать трёхкомпонентный комплекс из GTP и инициатора тРНК метил-тРНК, в котором не вырабатывается метионин. Но эта тРНК, однако, отдельна от пролонгатора метил-тРНК. В присутствии 40S-субъединиц рибосом тройной комплекс даёт начало 40S-инициирующему комплексу. В одно время с некоторыми другими группами (Лондон, Вурма), Очоа и де Харо выделили белковый ген, который они назвали ESP; у этого белка было множество названий, зависящих от группы, которая его открыла, теперь же он называется EiF2B. Его способ действия был объяснён гораздо позже. Он катализирует реакцию обмена между GTP и GDP, выделяя GDP и заменяя его на GTP. eIF2B был выделен в течение работ по изучению роли гема в глобиновом синтезе ретикулоцитлизатом. Гем препятствует фосфорилированию небольших субъединиц eIF2 специфической киназой. Когда eIF2 фосфорилирован, он устойчиво связывается в тройной комплекс и предотвращает выделение eIF2B из катализируемой реакции обмена. Механизм в том, что eIF2B больше, чем eIF2, поэтому, чтобы предотвратить действие eIF2B, изолируя его, достаточно только частичного фосфорилирования eIF2.

Репликация РНК вируса

Северо Очоа был заинтересован в ферменте, ответственном за синтез РНК в вирусном геноме РНК, и, когда в 1961 году к нему на факультет пришёл Чарльз Вайсман, он предложил ему заняться репликацией РНК. Сначала, вместе с Джо Краковым, Вайссманн начал изучать репликацию РНК вируса табачной мозаики в листьях шпината, но вскоре переключился на кишечные палочки с заражёнными f2- или MS2-РНК. Очоа всегда интересовался работой, но сам в ней участия не принимал. К Вайсману в разное время присоединялись многие учёные, такие, как Мартин Биллетер, Рой Бёрдон и Питер Борст. Между группами Вайсмана, Шпигельмана и Августа проходило соревнование. Объяснение механизма синтеза вирусной РНК было сложной задачей, так как фермент не был растворимым. В конечном счёте, выбор вируса Q оказался наилучшим. Q-РНК-полимеразу очистили до гомогенного состояния и доказали специфические ограничения для матрицы Q-РНК. В 1968 году все три группы встретились и пришли к общему заключению по механизму репликации РНК. На первой стадии на плюс-цепи матрицы образуется минус-цепь, промежуточное вещество имеет открытую структуру. Матрица и продукт не образуют двойную спираль, но держатся вместе при репликации. Структура разрушается внутри двуцепочечной структуры только при извлечении белков. На второй стадии репликации минус-цепь используется в качестве матрицы для синтеза плюс-цепи. Этот комплекс аналогичен первому, только матрица по всей длине — минус-цепь.

КОММЕНТАРИИ
Написать комментарий

НАШИ ЛЮДИ