Добавить биографию на сайт

Биографии известных людей.
Факты, фото, видео, интересные истории.

Поделиться

Расулов, Меджид Лятиф оглы: биография

24 декабря 1968 года избран членом-корреспондентом, 30 июня 1983 — действительным членом (академиком) Академии наук Азербайджанской ССР.

Основные направления исследований:

  • теория дифференциальных уравнений с частными производными — разработал вычетный метод и метод контурного интеграла для решения широких классов граничных и смешанных задач, а также задачи Коши;
  • спектральная теория линейных дифференциальных операторов — установил новые формулы разложения произвольных вектор функций в контурные интегралы и ряды по вычетам решений спектральных задач для дифференциальных уравнений;
  • функциональный анализ — установил условия единственности распространения линейных функционалов, определённых на подпространстве Банаха, с сохранением его нормы;
  • применение функционального анализа к теории дифференциальных операторов — установил условия нормальности обыкновенного линейного дифференциального оператора.

Первые научные исследования М. Л. Расулова обобщены в его кандидатской диссертации «Исследование вычетного метода решения некоторых смешанных задач для дифференциальных уравнений», написанной в 1946—1948 годах (см. список научных трудов, [1]). В работе им были найдены необходимые и достаточные условия единственности продолжения линейного функционала с подпространства на все пространство Банаха и установлены необходимые и достаточные условия нормальности одномерного линейного дифференциального оператора, рассматриваемого в L2. Результаты были оформлены в виде статьи, представлены в редакцию журнала «Математический сборник АН СССР», и вышли в печати в 1952 году (см. [4]). В связи с многочисленными смешанными задачами для дифференциальных уравнений, возникающими в приложении, после защиты кандидатской диссертации начался второй, более интенсивный период исследований М. Л. Расулова. Этот период с 1949 по 1958 год, был посвящён более полному исследованию вычетного метода решения задач для дифференциальных уравнений. В этих исследованиях, прежде всего надо было решить следующие задачи.

  1. Установить формулу разложения и условия разложимости произвольной вектор-функции в ряд по вычетам решения граничной задачи с комплексным параметром (выбранной подходящим образом для данной смешанной задачи) для системы обыкновенных дифференциальных уравнений с переменными, вообще говоря, с кусочно-гладкими коэффициентами.
  2. Решая задачу, соответствующую задаче 1, на основании полученной формулы разложения вектор-функции дать вычетную формулу, представляющую решение поставленной смешанной задачи для системы линейных дифференциальных уравнений в частных производных с кусочно-гладкими коэффициентами. При этом в задаче 2 возможны две постановки.
    1. С одной стороны, показать, что достаточно гладкое решение поставленной смешанной задачи представимо полученной вычетной формулой.
    2. С другой стороны, в предположении достаточной гладкости и согласованности начальных и граничных условий доказать, что функция, определяемая данной вычетной формулой, является решением поставленной смешанной задачи.
  3. Исследовать задачи 1 и 2 для многомерного случая.

М. Л. Расуловым задача 1 и задача 2 в первой постановке были решены полностью. Для достаточно общей одномерной спектральной задачи были установлены формулы кратного разложения вектор функций в ряд по вычетам решения и условия разложимости. Была также найдена вычетная формула, представляющая формальное решение соответствующей одномерной смешанной задачи, и на основании установленных формул разложения доказано, что если существует решение соответствующей смешанной задачи, то оно может быть представлено данной вычетной формулой (см. [8, 11, 12, 13, 15, 17]). Тем самым установлена также единственность решений рассматриваемой задачи. Задача 2 во второй постановке была решена для частных случаев, встречающихся в приложении. Так например, доказано суествование решения (представимого данной вычетной формулой) задачи А. Н. Крылова о расчете масляного кабеля при коротком замыкании, которая сводится к нахождению решения уравнения теплопроводности с кусочно-постоянными коэффициентами при данных начальных и граничных условиях, содержащих и условия сопряжения в точках разрыва коэффициентов (см. [16], параграф 5). Далее доказано существование решения, представимого данной вычетной формулой, для одной плоской смешанной задачи подземной гидромеханики. Эта задача также сводится к нахождению решения уравнения теплопроводности с кусочно-постоянными коэффициентами при заданных начальных и граничных условиях. Отличие этой задачи от задачи решенной Коши состоит в том, что граничное условие содержит производную по времени. Этот результат был опубликован в статье «Об одной задаче подземной гидромеханики» (см. [7]). Он является первым строгим математическим результатом в серии работ, посвящённых исследованию смешанных задач для дифференциальных уравнений, содержащих в граничных условиях производные по времени.

КОММЕНТАРИИ
Написать комментарий

НАШИ ЛЮДИ